Realization of Coherent State Lie Algebras by Differential Operators
نویسنده
چکیده
A realization of coherent state Lie algebras by first-order differential operators with holomorphic polynomial coefficients on Kähler coherent state orbits is presented. Explicit formulas involving the Bernoulli numbers and the structure constants for the semisimple Lie groups are proved.
منابع مشابه
Differential operators on orbits of coherent states
We emphasize some properties of coherent state groups, i.e. groups whose quotient with the stationary groups, are manifolds which admit a holomorphic embedding in a projective Hilbert space. We determine the differential action of the generators of the representation of coherent state groups on the symmetric Fock space attached to the dual of the Hilbert space of the representation. This permit...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملConstructing Lie algebras of first order differential operators
We extend Guillemin and Sternberg’s Realization Theorem for transitive Lie algebras of formal vector fields to certain Lie algebras of formal first order differential operators, and show that Blattner’s proof of the Realization Theorem allows for a computer implementation that automatically reproduces many realizations derived in the existing literature, and that can also be used to compute new...
متن کاملLinear Hamiltonians on homogeneous Kähler manifolds of coherent states
Representations of coherent state Lie algebras on coherent state manifolds as first order differential operators are presented. The explicit expressions of the differential action of the generators of semisimple Lie groups determine for linear Hamiltonians in the generators of the groups first order differential equations of motion with holomorphic polynomials coefficients. For hermitian symmet...
متن کاملPrincipal Vertex Operator Representations For Toroidal Lie Algebras
Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal vertex operator construction for the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008